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BACKCASTING FROM GRADUATION TARGETS TO

REQUIRED ENROLLMENTS USING THE GENERALIZED

INVERSE OF THE TRANSFORMATION MATRIX

The general solution to the problem of calculating school

enrollments at time (t-1) necessary to meet predetermined graduation or

manpower targets at time t is derived ands examined. It s based on

the generalized inverse of the transformatio a hat describes

the pupil flow through the school. The author has applied this technique

[Jaoua et al, 19/4] but at the time thereWas no solid theoretical

basis for it. This paper provides one.

The field of generalized,inverses,contains a confusion of definitions

and names including conditional inverse, pseudoinverse, and weak

generalized inverse. The one used here is the stong or unique generalized

inverse defined by the four equations below (1 to 4). For many but not

all ofthe findings in this paper a weaker nonunique inverse meeting

fewer than 4 of the conditions would have sufficed. To achieve sim-

plicity of presentation andlpecauSe of the availability of computer

software we use only the unique one.

Symbols and conventions are now outlined. "A" represents a

general matrix which transforms enrollments into graduations. "G"

is its generalized inverse. "B" and "C" are two matrices whose product

is A (A...--,BC) and whose inner dimensions are equal to the'rank of all

,three. "x" is a vector of enrollments and 44y" a vector of%graduates,



each disaggregated by discipline, program or labor farce category.

"m" and itn" are scalars representihg vector or matrix dimensions.

"r" always represents the rank of a matrix and sometimes a dimension.

Lambdai ("X") are eigeOalues; "I' is the identity matrix; and "h"

is a vector of arbitrary variables, with elements hl, h2a etc. "Iff"

means if ancronly if. The word""solutidn" is.used rather loosely in

that it sometimes refers to an exact genyintsolution and sometimes to

an. approximation. The precise meaning is clear from the context.

The Accasting Problem

It;

Numerous authors have modeled student flow thraugh school systems

[See Johnstont, 1974; and Schiefelbein and Davis,.1974 for reviews]

using Matrix transformations of the type Ax = y where ko is the pro-

portion,of persons in gradeor institution j (often called "state")

during the initial time period who move onto state i for a later time

,',..period. The vectors x and .y represent the number of persons'in' the

various states duriig the initial and later periods respectively. If

the-transformation matrix A is square, and equal i's and j't represent

the same states then the transformation can be compounded over any number

of periods by'raising A to higher powers. In the case of square A this

is similar to a Markoy proCess except that it is frequently seen as

deterministic or prescribed rather than stochastic. Furthermore, drop- .

outs are often treated as a residual in which case 11]tA # [1] t and

populations are not conserved.

Frequently educational planners are given this problem in

reverse. They are provided with a set.of manpower !or graduation targets

to be met in some future period/. They must then c lculate the enrollments

I)
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necessary to bring about the required number of graduations. If the

transformation matrix A has equivalent row and column states and is

square and nonsingular then the solution is obtained by premultiplying'.

the graduation target vector y by the inverse of A'(X = A-ly). It is

argued below that A is usually noasquare and that if it is made square

by including all states in both the row and column spaces it will, in

general, be singular.

Any square transformation matrix that accurately represents

progress through a school or school system is nilp tent and therefore

singular. Everyone who enters a school eventuall aves either through

graduation, dropout, or death. Thus some power o the matrix A which
ANI

transforms entrants into graduates must Map every entrant,vector into

a zero graduation vector. The only such matrix is the.zero matrix.

If An =0.then A ie nilpotent which is sufficient for singularity.

if
The addition of an absorbing state to the matrix to collect all

the graduates prevents nilpotency but does not guarantee invertibility.

In general, if the system contains division points where students flow

44,

froone stream equally into two or more streams the transformation

matrix is singUlar.

-IThe problem of backcasting from a vector of graduatipn targets

to the prerequis4elenrellments requires a, more general formulation '

than that'provided by the standard inverse for a nonsingular square

matrix. This paper shows that the problem can be solved using the

concept of a generalized inverse matrix [Ben-Israel and Greville, 1974;

,Boullion and Odell, 1971; and Rao and Mitra, 1971] with properties

expressed by 6qustions (1) to (4). A is any matrix and G is its gen-

eralized inverse.



I .. AGA = A
(1)

GAG = G (2)

AG = (AG)t (3)

GA = (GA)t (4)

The generalized inverse G exists:for all A and is unique Graybill.,

1969, p. 97.]. Substitution of A
-1

for G in the above shows that the

definition of G simplifies to the standard inverse for invertible A.

For rectangular m x n matrices, G has dimensions n x m. The inverse of

ezero matrix is the zero matrix-with reversed dimensions.

The following two sections develop ey "generalized inverse" with

the properties needed to solve the backcasting problem. This is then'

shown to be the matrix that satisfies conditions (1) to (4) above.

The Least Squares Criterion;? .

The starting point the matrix equation Ax = y with A, a

given m x n transformation' atrix ofrank r; and y, a vector of gradua-

tion targets.. The solutitli set which contains values of the enrollment

vector x may be empty. it is, an approximation to x is desired.

The approximation used is least squares, the solution that

minimizes the squared discrepancy betwe1n the actual y and the y pre-
y

dicted by x. We wish toltlect an x thatAminimizes

(y-Ax)t(y-Ax)

ax
(y-Ax)t(y-Ax) = -2At(y-Ax) = 0-

A
t
Ax = A

t
y

A deus ex tachina is required at this point because A May not belinvertible.

This is provided by thesingular value decomposition of A [Noble, 1969,
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p. 338]. A is dedomposed into two,matrices B and C of order m x r and

r x n respectively such that A = BC. All three matrices are of rank

r. For this reason (BtB) and (CCtliere invertible. Substitution of

BC for A gives:

(BC)t(BC)x = (BC)ty

Premulttplying by C and regrouping gives:

(CCt)( BtB)Cx = (JCCt)Bty

(8)

(9)

Because of the invertibility of the leftmost terms the expression reduces

to:

Cx =
(BtB)-lBty

Equation (10) gives the least squares solution for x as far

as we can take it. It will always exist but may not be unique. There

my_jiaean infinite set of x's that reduces the squared discrepjncy to

zero or to some single positive value.

The Minimum Norm Criterion

To obtain a unique solution another criterion_ is needed. We

choose, to minimize the Eudlidean norm of x, using the techniques of

Lagrange multipliers.

/ L = x
t
x + 2x

t
(y* - Cx) -(11)

where y* = ( Bt8)-/Bty (12)

The symbol y* defined by equation (12) is used for convenience. The

constraint in parentheses in (11) is just Obation (10). The:term 2Xt

is a row vector of Lagrange multipliers with the scalar,2, also present

for convenience. Partial differentiation yields equations P3) and (14).

(10)
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3L
-
_

2x - 2C
tX

= 0 (13)
3x

aTTT. 2(y* - Cx) =0 (14)

From equations (13) and (14) we obtain (15) and (16) respectively.

x = Ct), .
(15)

y* = (16)

Sibstitung (15) into gives:

y* = CCtx (17)

.Atdt)-1y* (18)

Substituting (18) into (15) gives

.

. x = C
t
(CC

t
)
-1

y* '(l9)

Finally, we substitute (12} into (19) to get rid of y* and give the least

squares mtnimuM norm solUtion.

t t r.1 t -1
x = C (CC ) (B 8) B

t
y (20).

* Equation (20) isnow.used to define G.

g,. ct(cc);.J(Bt) lBt (21)

Substitution of BC for A And the .ig side of (21) into equations

(1) to (4) will convince the reader tha the above expression satisfies

the definition of the unique generalii inverse.

,i/

Some Generalized Inverse Properties

A number of important results which a used later follow from

the defOition of G (21) and the fact that = BC. These are listed

belot.qi(

AG . B(BtB)-/Bt

GA = C
t
(CC

t
)

-1C.

(GA)2 . GA

,G'

(22)

(23)

(24)



Note that AG and GA are m x m and n x n matrices, respectively. Equation (24),

whichcan be derived by squaring (23), shows that GA is an idempotent.

matrix. Premultiplication of (24) by (GA)
-1

demonstrates that the only

nonsingular idempotent matrix is the identity matrix. Squaring of

(I-GA) followed by the application of (24) can be used to prove that

(I-GA) is also idempotent, an important result for the next section.

Similarly, (AG) and (I-AG) are idempotentom The expressions for GA and .

AG can be used to show that GA, AG, p-GA), and (I-AG) are all symmetrid.

The expression for G (21) gives us the least squares minimum

norm solution t equation Ax = y as follows:

x.= Gy '(25)

OP But what is really needed is a solution to equation (10), that

is, the set of all x for which the squared discrepancy, ((y-Ax)t(y-Ax)),

treache* its minimum value. If the minimum squared discrepancy is zero,

the solutions are,exact; otherwise they are approximate. Either may

be unique or indeterminate. The general least squares solution is .

presented in the following section folloWed by a.proof that it exactly.

represents the complete solution to egialion (10).

y

The General,Least Squar4s Solution

The complete least squares solution to x is as follows:

x = Gy (I - GA)h j (26)

where h is an arbitrary n x 1 column vector. This is proven in two

steps. Firstly, it is Ooven that (26) satisfies (10) and secondly,

that for every x satisfying (10) there is at least one h such that x

also satisfies (26).

10



The first step begins with the substitution of (26) into (J6).

C(Gy + .(I - GA)h) = (E3tB)-iBtx

Substituting (23) for GA and (21) for G gives the following expression

for the' left hand sidi

C,(Ct(C-1 (BtB)-18ty + (I - Ct(CCt)-1C) h).Ct)

Removing the outer parentheses and removing,CCt(CCt)- in two places

results in considerable simplification.

(8t8)-1Bty
+ (C1 - e) h

.
1

The right term clearly disappears cleaving (29) identical to the right

hand-side of (27). Thus our expression for x, (26), is a solution to

(10). .We now prove that (26) is the complete solution:

Starting with equation (10) we show that every x that is ft

solution is also a solution to (26) for some'h. Premultiplying (10)

(27)

(28)

(29)

by GB gives:
,11

GBCg = GB(BtB)-/Bty (30)

Substituting A for BC in the left and equation (22) in the right gives:

GAx = (GAG)y (31).

Substituting (2) into the right and rearranging yields:

0 = Gy'- GAx (32)

x = Gy + x - GAx (33) -

x = Gy + (I GA)x (34)

Thus any ,x substituted for h satisfies equations (26) and (10). This

does not imply that x can be generated only by itself. The h corresponding

to any givenx is usually hot unique.

In the formula x = Gy + (I - GA)h, the first term on the right

is the solution corresponding to it m 0. It is also the minimum norm

solution as shown in (25). The second tern, provides forall other

11
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solutions. Interpreting this as a solution'to a system of linear equations,

we see that the first term is a particular solution (exact or approximate}

of the inhomogeneous system and the second term'is the general solution

of the homogeneous system. 'Attention is now concentrated onthe second

term in order to determine whether the solution is unique, and if not,

how many elements there are in the arbitrary vector, h.

The Indeterminacy of the Solution

In this section it is first shown that the rink of GA is equal

'to the sum of its di)enal elements, called its trace. The proof depends

; 1

,only on GA's symmetry and idempotency so that we can also apply the

finding to I and (I-GA). This is followed by three simple proofs, that

rank(GA) = rank(A), that' rank(I-GA) = n - rank(GA) and finally that '

rank(I-GA) = nullity(A). 1.16i:conclude that the columns of.(I-GA) form

a basis for the null space of A and that the rank of (I-GA) equals the

minimum number of elements in the arbitrary vector h.

*Since GA is real, square (n x n), and symmetric it isAermitian,

from which a number of important results follow. The eigenvectors of

'GA are all linearly independent and, in fact, are orthogonal [Noble, p. 321].

GA can be reduced to diagonal form by a transformation that is both a

similarity and a unitary transformation.

D = Q (GA)Q

or D = Q t ( GA )Q

such that,

Q
t
r 4

-1

Q is an orthonormal matrix and D is an n x nmatrix containing the

(35)

(36)

(37)

eigenvalues of GA in the diagonal and zeros elsewhere tNDble, 1969, p. 318].



py preMbltiplying the equation for eigenvalues, (GA - xI)v =10,,

ty GA arid substituting GA for (GA)2 the hader can derive the equation

(1 - A) (GA) ;V = 0 and conclude that either x = 1 or'GAv = 0, in which

case x = . Thus the. eigenvalues are all zeros and ones.

'rider the relationship between the' ranks and eigenvalues of

VI and D. The rank of D is equal' to the rank of ,GA-because multiplication

of a mdtrix (GA) by nonsingular matrices (Q
-1

and Q) does not change its

'rank [Nbble, 1969: p. 138]. The rows of the diagOnal matrix D can be

,interchOged to put the identity matrix into the upper left corner and

zeros 9erywhere else. From this it becomes clear that the-rank of D

is'equil to the sum of its eigenvalues. The same conclusion holds for

-GA since D. and GA'have the same eigenValues.
,,

This brings us to an important finding which applies to all

symmetric idempotent Matrices, Because the sum of the eigenvalues of

arig...4Ruare matrix is equal to its trace [Graybill, 1969, p. 223], the

rank of GA is equal to-tts trace,. This provides a simple compdtational

technique for determining the rink-of GA and'(1-GA),'both ot~ whic1re

symmetric and idemOotent.
0.0

Since the trAce of a matrix, difference is,equal to the difference

of the traces, the rank of (I-0) is equal to rank(I) raik(GA) or

n -Tank(GA).

- It is well known that for any.G and A conformable for multiplication

rank1GA-< ranklA) [Noble,:1969,pi 139]; Applying this same principle

7 -4
to equation grouped as A(GA) =,A,,we cO,conclode that rank(GA) > Ank(A).

Therefore, rank(GA) = .iank(A).. By similar reasoning. it can be shown that

all of A, G, GA, and AG"have'the same rank, as do B and C.

We,can,nOw combine these findings to reach the final conclusion
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of this section. The general solution contains a matrix (I-GA) whose

rank is equal to its trace. Furthermore, its rank is equal to n - rank(GA)'

or n - rank(A). But n - rank(A) = nullity(A). by Sylvester's Law of Nullity 4!

[Gillett, 1970, p. 154]. 'Therefore, the trace and rank of (I-GA) are

equal to the nullity of A. By premultiplying (I-GA)h "by A and substitutin

A for AGA (2) we see that all vectors of the form (I-GA)h4re mapped

into the zero vector by A. Thus, theAre in the null space of A.

. Because (I-GA) has the rank of the null space of A, (n - rank(A)); it

must have exactly (n - rank(A)) linearly independent columns. The

columns of (I-GA) therefore form a basis for the null space of A.

Unfortunately, this is not a minimal basis for the null space

of A; it contains n vectoi-s'but only (n- rank(A)) linearly independent

ones. This form of (I-GA) does notsrovide much insight.into the structure

of A's null space, a practical and computational problem which is discUssed

in the section on computation.

The Approximateness of the Solution :t;'
, ..

.

This section examines the cirCu%Jmstances under which the equation.

Ax=y yields exact and.,approximate values for x. firstlyian expression

for the squared discrepanay that depends only on y and A is derived.

This is used to define three possible outcomes for a given A and the set

of all y.

+ ,

The,squared'discrepancy is ((y-Ax)" (y-Ax)) which is minimal"

when x = Gy + (I-GA)h. Suiist utinb the'expression for x in the expression

for the square discrepancy Oyes:

(y-M, y + (I-GA)iiYi;(y -A(Gy 1-_,(1-GA)h))
'

This exp6sic: can be simplified by substituting zero for A(I-GA).

(38)
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(yAgy)t,.(y-AGy)

y - y
t
(AGy) - (AGy)

t
y + (AGy)

t
AGy

(39)

(40)

This can be simplified by noting that each 'term is .11 scalar and, therefore,.

equal to its,transpose and that AG is symmetric and idempotent..

°y
t
(I-AG)y (41)

Equation (41) is the expression we seek, the minimum squared discrepancy

for a given A and y. Exact solution(s) exist when (41) is equal to zero.

To examine the conditions under which (41) is equal to zero it

is necessary to use the fact that a nonnegative quadraiic form i; equal

tozero if and only if.the vector valued expression produced by removing

the prepositioned vectonfrom the quadratic,formsis zero.

The proof of) this involves the diagonalization of (I-AG), and the,

trausformation of y and y
t

into z and z
t
by the orthonormal matrix of

r

eigenvectors.

yt(I-AG)y = y
t
Q DQy,

We define z as Qy. Since Q is orthonormal

becomes

z
t
Dz

The,expre"'Ssion

(43)

where D is the diagonal matrix of eigenvalues of (I-AG). This expression

is a scalar and can be written as follows:

ztDz = z1(x1z1).+ z2(x2z2) +

where the subscripted z's represent elements of the vector z. Clearly

(zi(xl.z1)) = 0 if and, only if x1z1 = 0: Since the eigenvalues are all

nonnegative the expression (ziXizi) must,also be nonnegative. Thus,

the quadratic form can equal zero only, if every term on.the right hand

side of (44) is_zero, which means that every xizi= 0. Ihis'is the key

(44)
;4.- ,
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to the proof. It means that:

yteldgy = 0 iff DQy = 0

Since Q
-1

is nonsingular,

0 iff 0

Combining (45) and (46) and.substituting.(I-AG) for Q-10Q completes the

proof.

y
t
(I-AG)y = 0' iff (I-AG)y = 0

We can now proceed to examine the conditions under which exact.

solutions exist.- There is an exact solution for,ail y such that

y AGh (48)

The'first stage of the/proof verifies that any y satisfying (48) resulti

in a zero value for (41), the squared. discrepancy. Substituting (48) into

(41) gives:

(AGh)t(I-AG)AGh (49) -

Multiplying.(49) through by the post positioned AG and application of(1)

results in a zero,value.for the expression. The second stage of the proof

shows that an h exists for every y that results ip a zero value of (41).

This time the expression (I-AG)y from (47) is-set to zero, rather t ,han the

corresponding quadratic form. ManipUlationof this expression quickly

shows that:

y = AGy (50

This completed the proof. Since AG is generally singular, y is not the

only value of h that will generate y.

The results for solution approximateness can 01. summarized into

three cases, the first of which is trivial..

If AGO the only y yielding an'exa6t solution is the zero

vector. Inspection of (1) shows that AG =O if and only if A=0.
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From equation. (41) it is clear that if G = I, there Is an

exact solution for all y. Since AG is m x m end idempotent this can

.occur only if the rank of A is m.

The intermgdiate cases are those or which the rank of AG is

greater than zero but less than m. The e y7/eld exact.solutions for

those y that satisfy (50) and approxi ate,solutions for all other values

of y. /IP /^.

Computation-

This section contains an example of an enrollment backcast and .

/
some hints on computation.

The example was s lved with a program of 50 Fortran statements I.
that input the trdnsfor atio7/matrix (A), the target vector (y), and then

called widely availab e subroutines to do the rest. The subroutines,

including one that a 'lcul/tes the unique generalized inverse of a matrix

by means of singu ar vatue decomposition.[Noble, 1969, p. 335-40], are a
.

part of the Int rnational.Mathematical and Statistical LiFiii1JIMSL, 1974].

..This library so contains subroutines to do the other matrix and vector

operations cessary to calculate anA output the complete solution. -

*** Place Figures.1 and-2 about here ***

The problem and solution are contained in figures 1 and 2,

res ectively. The problem consists of one transformation matrix (A)

an two graduation target vectors, yl, and y2, which generate two least

orm solutions, x
1

and x2, respectively. The general solution to the
100

homogeneous problem is thee same for all y, given A.
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The information fri Figure 2 permits us to analyze the solutions.

The matrix (I-GA) is 4 x 4 with a trace of 2. Its rank is, therefore,

2 and from this GA has a rank of 4-2=2. "A and AG are of rank 2. (I-AG)

is 5 x 5 and has a rank of 5 -2 =3. We conclude that there will be an

infinite number of least squares
A

solutions, some exact and some approximate

depending on y. The expressions for yt(I-AG)y show that yl has exact

solutions and y2 has approximate solutions.

The matrix (I-tA), which is a undant basis of the null space

of A, can be converted to a more convenient form by removing the unnecessary

-vectors-.- A-systemattcwo, to do this .4 to reduce it to row echelon form
. ,.

-ea1-s-o-icnowrr-is---Hennkte normal- form) and transpose_ it. -After itscarding

the zero columns this gives a basis of (n-r) column vectors with the- ,

identity matrix in the .to frirr) rows as shown at the boftom of Figure i:

Two undestrable.types of enrollment vectors are often generated.

The least serious and most common contains" noninteger enrollments that

can be rounded. Negative enrollmenti'moy occur ineiher the leash norm

or the general solution.

Thd.number of enrollment vectors in any solution will be finite

if only vectors with nonnegatiye-tnteger,enrollmentt with a finite maximum

. sum are considered.

Conclusion

The enrol/Talent backcasting problem Ax=y has been solVed: The

complete exact or approximate solution is x = Gy + (I -GA)h Where G is 'the

generalized inverse of A and h is an arbitrary vector Whose minimUmf

dimension is equal to the nullity of A. The solution isexact if

,

yt.(1-AG)S, = 0; otherwise, it is a 'Least squares approximation. Figure 3
D

1 t'



summarizes the rank and order analysis of the s

1,t

*** Place Figure 3 about here

. ti

.1 fJ
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FiGURE 1

THE EXEMPLARY PROBLEM
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FIGURE 2

THE SOLUTION TO THE EXEMPLARY PROBLEM
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FIGURE 3

ANALYSIS OF THE GENERAL SOLUTION
BY MEANS OF RANK AND ORDER

INFORMATION

Start here.

Ax=5r

A is m x n
and of rank

1,41 and r<n

There are an infinite number of
solutions which are exact if yAGy
and approximate if May.

d>m=r, AG=I
There are an'infinite

. number of exact solu-
tions for every y

4

m=n=r, G=A-1

The e unique
exact x for every y.

4

m>n=r, GA=I
There is a unique solution
which is exact if y=AGy and
approximate if y4AGy.

NOTE: "G". is the unique generalized inverse of A.


